elasticsearch-RestClient文档查询

上一章我们讲到用RestClient进行索引库以及对文档的基本操作,这一篇文章,我们学习用RestClient来进行文档的查询操作。

img

@Slf4j
public class HotelSearchTest {

    private RestHighLevelClient client;

    /**
     * 初始化客户端
     */
    @BeforeEach
    void setup(){
        client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.113.130:9200")
        ));
    }

    @Test
    public void matchAll() throws IOException {
        SearchRequest request = new SearchRequest("hotel");
        request.source()
                .query(QueryBuilders.matchAllQuery());
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        SearchHits hits = response.getHits();
        long total = hits.getTotalHits().value;
        log.info("总条数:{}",total);
        SearchHit[] hitsHits = hits.getHits();
        for (SearchHit hitsHit : hitsHits) {
            String sourceAsString = hitsHit.getSourceAsString();
            HotelDoc hotelDoc = JSONObject.parseObject(sourceAsString, HotelDoc.class);
            log.info(String.valueOf(hotelDoc));
        }
    }


    /**
     * 关闭客户端
     * @throws IOException
     */
    @AfterEach
    void close() throws IOException {
        client.close();
    }
}

关键的 API 有两个,一个是 request.source(),其中包含了查询、排序、分页、高亮等所有功能,另一个是 QueryBuilders,其中包含 match、term、function_score、bool 等各种查询

解析查询响应

Elasticsearch 返回的结果是一个 JSON 字符串,结构包含

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个 json 对象
      • _source:文档中的原始数据,也是 json 对象

因此,我们解析响应结果,就是逐层解析 JSON 字符串,流程如下

  • SearchHits:通过 response.getHits() 获取,就是 json 中的最外层的 hits,代表命中的结果
    • SearchHits.getTotalHits().value:获取总条数信息
    • SearchHits.getHits():获取 SearchHit 数组,也就是文档数组
      • SearchHit.getSourceAsString():获取文档结果中的 _source,也就是原始的 json 文档数据

match查询

img

@Test
public void matchQuery() throws IOException {
    SearchRequest request = new SearchRequest("hotel");
    request.source()
            .query(QueryBuilders.matchQuery("all","如家"));
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    SearchHits searchHits = response.getHits();
    System.out.println("hits.getTotalHits().条数 = " + searchHits.getTotalHits().value);
    SearchHit[] hits = searchHits.getHits();
    for (SearchHit hit : hits) {
        String sourceAsString = hit.getSourceAsString();
        HotelDoc hotelDoc = JSON.parseObject(sourceAsString, HotelDoc.class);
        System.out.println(hotelDoc);
    }
}

@Test
public void multiMatchQuery() throws IOException {
    SearchRequest request = new SearchRequest("hotel");
    request.source()
            .query(QueryBuilders.multiMatchQuery("如家","name","brand"));
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    SearchHits searchHits = response.getHits();
    System.out.println("hits.getTotalHits().条数 = " + searchHits.getTotalHits().value);
    SearchHit[] hits = searchHits.getHits();
    for (SearchHit hit : hits) {
        String sourceAsString = hit.getSourceAsString();
        HotelDoc hotelDoc = JSON.parseObject(sourceAsString, HotelDoc.class);
        System.out.println(hotelDoc);
    }
}

精确查询

精确查询主要是两者

  • term:词条精确匹配
  • range:范围查询

img

布尔查询

布尔查询是用 must、must_not、filter等方式组合其它查询,代码示例如下

img

@Test
void testBool() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
            .query(
                    QueryBuilders.boolQuery()
                            .must(QueryBuilders.termQuery("city", "上海"))
                            .filter(QueryBuilders.rangeQuery("price").lte(300))
            );
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    System.out.println("hits.getTotalHits().条数 = " + searchHits.getTotalHits().value);
    SearchHit[] hits = searchHits.getHits();
    for (SearchHit hit : hits) {
        String sourceAsString = hit.getSourceAsString();
        HotelDoc hotelDoc = JSON.parseObject(sourceAsString, HotelDoc.class);
        System.out.println(hotelDoc);
    }
}

排序、分页

搜索结果的排序和分页是与 query 同级的参数,因此同样是使用 request.source() 来设置。

对应的API如下

img

@Test
void testPageAndSort() throws IOException {
    // 页码,每页大小
    int page = 1, size = 5;

    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchAllQuery());
    // 2.2.排序 sort
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页 from、size
    request.source().from((page - 1) * size).size(5);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    System.out.println("hits.getTotalHits().条数 = " + searchHits.getTotalHits().value);
    SearchHit[] hits = searchHits.getHits();
    for (SearchHit hit : hits) {
        String sourceAsString = hit.getSourceAsString();
        HotelDoc hotelDoc = JSON.parseObject(sourceAsString, HotelDoc.class);
        System.out.println(hotelDoc);
    }
}

高亮

  • 查询的 DSL:其中除了查询条件,还需要添加高亮条件,同样是与 query 同级。
  • 结果解析:结果除了要解析 _source 文档数据,还要解析高亮结果

高亮请求的构建 API

img

@Test
void testHighlight() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchQuery("all", "如家"));
    // 2.2.高亮
    request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response); //代码在下文
}

高亮结果解析

高亮的结果与查询的文档结果默认是分离的,并不在一起。

因此解析高亮的代码需要额外处理:

img

  • 第一步:从结果中获取 source。hit.getSourceAsString(),这部分是非高亮结果,json 字符串,需要反序列为 HotelDoc 对象
  • 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个 Map,key 是高亮字段名称,值是HighlightField 对象,代表高亮值
  • 第三步:从 map 中根据高亮字段名称,获取高亮字段值对象 HighlightField
  • 第四步:从 HighlightField 中获取 Fragments,并且转为字符串。这部分是真正的高亮字符串
  • 第五步:用高亮的结果替换 HotelDoc 中的非高亮结果

完整代码如下:

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

地理坐标查询

img

相关性得分

function_score 查询结构如下

img

对应的 JavaAPI 如下

img


elasticsearch-RestClient文档查询
https://www.zhaojun.inkhttps://www.zhaojun.ink/archives/1009
作者
卑微幻想家
发布于
2022-01-21
许可协议